Akaike-type criteria and the reliability of inference: Model selection versus statistical model specification
نویسنده
چکیده
Since the 1990s, the Akaike Information Criterion (AIC) and its various modifications/extensions, including BIC, have found wide applicability in econometrics as objective procedures that can be used to select parsimonious statistical models. The aim of this paper is to argue that these model selection procedures invariably give rise to unreliable inferences, primarily because their choice within a prespecified family of models (a) assumes away the problem of model validation, and (b) ignores the relevant error probabilities. This paper argues for a return to the original statistical model specification problem, as envisaged by Fisher (1922), where the task is understood as one of selecting a statistical model in such a way as to render the particular data a truly typical realization of the stochastic process specified by the model in question. The key to addressing this problem is to replace trading goodness-offit against parsimony with statistical adequacy as the sole criterion for when a fitted model accounts for the regularities in the data. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Akaike-type Criteria and the Reliability of Inference: Model Selection vs. Statistical Model Specification∗
Since the 1990’s the Akaike Information Criterion (AIC) and its various modifications/extensions have found wide applicability in econometrics as objective procedures which can be used to select parsimonious statistical models. The aim of this paper is to argue that these model selection procedures invariably give rise to unreliable inferences primarily because their choice within a prespecifie...
متن کاملAris Spanos Foundational Issues in Statistical Modeling : Statistical Model Specification and Validation
Statistical model specification and validation raise crucial foundational problems whose pertinent resolution holds the key to learning from data by securing the reliability of frequentist inference. The paper questions the judiciousness of several current practices, including the theory-driven approach, and the Akaike-type model selection procedures, arguing that they often lead to unreliable ...
متن کاملStatistical Model Specification and Validation: Statistical vs. Substantive Information
Statistical model specification and validation raise crucial foundational problems whose pertinent resolution holds the key to learning from data by securing the reliability of frequentist inference. The paper questions the judiciousness of several current practices, including the theory-driven approach, and the Akaike-type model selection procedures, arguing that they often lead to unreliable ...
متن کاملStatistical Inference in Autoregressive Models with Non-negative Residuals
Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...
متن کاملModel Selection Based on Tracking Interval Under Unified Hybrid Censored Samples
The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid cens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010